首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4576篇
  免费   1197篇
  国内免费   679篇
化学   3741篇
晶体学   66篇
力学   209篇
综合类   28篇
数学   193篇
物理学   2215篇
  2024年   5篇
  2023年   55篇
  2022年   108篇
  2021年   177篇
  2020年   270篇
  2019年   192篇
  2018年   150篇
  2017年   180篇
  2016年   255篇
  2015年   241篇
  2014年   339篇
  2013年   426篇
  2012年   358篇
  2011年   336篇
  2010年   286篇
  2009年   297篇
  2008年   310篇
  2007年   284篇
  2006年   279篇
  2005年   249篇
  2004年   270篇
  2003年   208篇
  2002年   149篇
  2001年   117篇
  2000年   98篇
  1999年   104篇
  1998年   89篇
  1997年   85篇
  1996年   81篇
  1995年   70篇
  1994年   66篇
  1993年   48篇
  1992年   51篇
  1991年   34篇
  1990年   27篇
  1989年   24篇
  1988年   23篇
  1987年   14篇
  1986年   21篇
  1985年   8篇
  1984年   11篇
  1983年   3篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   10篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有6452条查询结果,搜索用时 312 毫秒
61.
Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000–1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host–guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host–guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host–guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.  相似文献   
62.
Methicillin-resistant Staphylococcus aureus (MRSA) can induce multiple inflammations. The biofilm formed by MRSA is resistant to a variety of antibiotics and is extremely difficult to cure, which seriously threatens human health. Herein, a nanoparticle encapsulating berberine with polypyrrole core and pH-sensitive shell to provide chemo-photothermal dual therapy for MRSA infection is reported. By integrating photothermal agent polypyrrole, berberine, acid-degradable crosslinker, and acid-induced charge reversal polymer, the nanoparticle exhibited highly efficient MRSA infection treatment. In normal uninfected areas and bloodstream, nanoparticles showed negatively charged, demonstrating high biocompatibility and excellent hemocompatibility. However, once arriving at the MRSA infection site, the nanoparticle can penetrate and accumulate in the biofilm within 2 h. Simultaneously, berberine can be released into biofilm rapidly. Under the combined effect of photothermal response and berberine inhibition, 88.7% of the biofilm is removed at 1000 µg mL−1. Moreover, the nanoparticles have an excellent inhibitory effect on biofilm formation, the biofilm inhibition capacity can reach up to 90.3%. Taken together, this pH-tunable nanoparticle can be employed as a new generation treatment strategy to fight against the fast-growing MRSA infection.  相似文献   
63.
The surface activation of alloys favors their electrochemical interactions, ion diffusivity, and the rapid kinetics of ions and electrons, leading to the formation of self-supported layered double hydroxides (LDHs) in them. However, the formation of LDHs at different depths in the alloy upon activation, their electronic/atomic structures, and their electrochemical charge storage mechanism, have not been thoroughly explored. Herein, Ni ion-substituted CoAl alloys are prepared by arc melting and activated by KOH electrolyte, which is responsible for the modulation of the atomic configuration as confirmed by XRD. Raman depth mapping demonstrates how the LDHs vary with depth upon activation and that the octahedral and tetrahedral symmetry sites of CoO and Co3O4 are responsible for the formation of the layered structures of CoOOH and Co(OH)2, respectively. The activated Ni10Co85Al5 has a superior volumetric capacitance of 4.15 F/cm3 at 0.5 mA/g, which is 38.6 times that of an unactivated one, and excellent cyclic stability up to 5000 cycles, and a voltage of 0.54 V generated from a fabricated supercapacitor cell. X-ray Absorption Spectroscopy (XAS) analysis indicates greater charge transfer by Co than by Ni and the modulation of the local atomic structures facilitates electrochemical charge storage in Ni10Co85Al5. This work presents an easy route for the development of advanced LDHs, and the mechanism of electrochemical charge storage in them.  相似文献   
64.
The optical properties, electronic charge density, electronic structure of the new layered selenides materials, BaGdCuSe3, CsUCuSe3, CsZrCuSe3, and CsGdZnSe3 compounds have been calculated by using the full potential and linear augmented plane wave (FP-LAPW) methods as applied in the WIEN2k package, which is based on the density functional theory. The ALnMSe3 compound's structure of these was (A = Cs, Ba; Ln = Zr, Gd, U; M = Cu, Zn) is composed of (n = 1, 2) layers, which might be separated by A atoms. It is to be observed that there is strong hybridization between the s, p, and d states of Zr, Gd, and Cu atoms. Around the gadolinium atom, the charge density contours are completely circular, but the Gadolinium “Gd” atom shows an ionic nature. To calculate the refractive index, we used Kramer's Kronig correlations with the imaginary part dielectric function. The decrease in the refractive index is due to the lack of probability for direct excitation of the electrons, resulting in a loss of energy. The value of the static refractive index for all reference compounds is about 1.75–2.25, which is indication that the material used in optoelectronic devices.  相似文献   
65.
The excited-state dynamics of the excited-state proton transfer and intramolecular twisted charge transfer (TICT) reactions of a molecular photoswitch 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine (DHP) in aprotic and alcoholic solvents have been theoretically investigated by using time-dependent density functional theory. The excited-state intramolecular proton transfer (ESIPT) reaction of DHP proceeding upon excitation in all the solvents has been confirmed, and the dual emission has been assigned to the enol and keto forms of DHP. However, for methanol and ethanol solvents within strong hydrogen-bonded capacity, the intermolecular hydrogen bonds between DHP and methanol/ethanol would promote an excited-state double proton transfer (ESDPT) along the hydrogen-bonded bridge. Importantly, the previous proposed ESDPT-triggered TICT mechanism of DHP in methanol and ethanol was not supported by our calculations. The twist motion would increase the total energy of the system for both the products of ESIPT and ESDPT. According to the calculations of the transition states, the ESDPT reaction occurs much easier in keto form generated by ESIPT. Therefore, a sequential ESIPT and ESDPT mechanism of DHP in methanol and ethanol has been reasonably proposed.  相似文献   
66.
Here, the effect of solvent on the stability of non-covalent complexes, was studied. These complexes were from previously published S22, S66, and X40 datasets, which include hydrogen-, halogen- and dispersion-bonded complexes. It was shown that the charge transfer in the complex determines whether the complex is stabilized or destabilized in solvent.  相似文献   
67.
Nanocomposites comprising flexible polymers and high dielectric constant inorganic nanoparticles are considered to be one of the promising candidates for electrostatic capacitor dielectrics.However,the effect of interfacial property on electrical ene rgy storage of dielectric polymer nanocomposites is still not clear.Herein,the role of the polarity of the interfacial region is investigated.For this purpose,three polymers with different polarity,polymethyl methacrylate(PMMA),polyglycidyl methacrylate,and polymethylsulfonyl ethyl methacrylate(PMSEMA) are attached onto BaTi03(BT) na noparticle surface via surface-initiated reversible addition-fragmentation chain transfer polymerization.It is found that the polarity of shell polymers shows an apparent effect on the dielectric and energy storage of dielectric polymer nanocomposites.For example,PMSEMA@BT(shell polymer possesses the highest polarity)increases dielectric loss and decreases the breakdown strength of the nanocomposites,leading to lower ene rgy storage capability.However,PMMA@BT(shell polymer possesses the lowest polarity) can induce higher breakdown strength of the nanocomposites.As a result,the PMMA@BT nanocomposite exhibits the highest electrical energy sto rage capability among the three nanocomposites.This re search provides new insight into the design of core-shell nanofillers for dielectric energy storage applications.  相似文献   
68.
The structure of the double layer on the boundary between solid and liquid phases is described by various models, of which the Stern–Gouy–Chapman model is still commonly accepted. Generally, the solid phase is charged, which also causes the distribution of the electric charge in the adjacent diffuse layer in the liquid phase. We propose a new mathematical model of electromigration considering the high deviation from electroneutrality in the diffuse layer of the double layer when the liquid phase is composed of solution of weak multivalent electrolytes of any valence and of any complexity. The mathematical model joins together the Poisson equation, the continuity equation for electric charge, the mass continuity equations, and the modified G-function. The model is able to calculate the volume charge density, electric potential, and concentration profiles of all ionic forms of all electrolytes in the diffuse part of the double layer, which consequently enables to calculate conductivity, pH, and deviation from electroneutrality. The model can easily be implemented into the numerical simulation software such as Comsol. Its outcome is demonstrated by the numerical simulation of the double layer composed of a charged silica surface and an adjacent liquid solution composed of weak multivalent electrolytes. The validity of the model is not limited only to the diffuse part of the double layer but is valid for electromigration of electrolytes in general.  相似文献   
69.
Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.  相似文献   
70.
Currently, highly luminescent colloidal upconversion nanoparticles (UCNPs) have expanded an increasing interest of researchers because of their facilitating lability in the biomedical/clinical field. In this study, NaYF4:Yb,Er UCNPs are prepared by eco-friendly metal complexation-based thermal decomposition method at a lower temperature in aqueous media. The phase structure, crystallinity, phase purity, morphology, colloidal dispersibility, surface structure, surface charge, and optical and luminescent properties were evaluated carefully by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive x-ray analysis (EDX), Thermogravimetric analysis (TGA), zeta potential, Fourier transform infrared (FTIR), UV/visible and photoluminescent spectroscopic techniques. XRD pattern shows a pure single-phase cubic structure with an average grain size of 30–35 nm. TEM and SEM micrographs exhibited irregularly shaped spherical morphologies, porous surface structures highly aggregated UCNPs with the narrow-size distribution. Positive zeta potential has shown value signifying high absorption in the visible region which indicates particle's good colloidal stability in aqueous media. Under NIR-laser light excitation, the UCNPs emit strong UC emission transitions in the visible region. A broad infrared absorption peak of hydroxyl groups (–OH) in FTIR spectrum and mass loss at a lower temperature in TGA verified the surface functionality of UCNPs, with high colloidal stability, and excellent biocompatibility in aqueous media. In terms of their surface characteristics and high luminescent properties, the NaYF4:Yb,Er UCNPs could be interestingly applied in tagging of biomolecules, drug delivery, proteins labeling, and therapeutic and thermostats applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号